Ephedra: SPARQL federation over RDF data and
services

Andriy Nikolov, Peter Haase, Johannes Trame, Artem Kozlov

metaphacts GmbH, Walldorf, Germany
{an, ph, jt, ak} @metaphacts.com

Abstract. Knowledge graph management use cases often require addressing hy-
brid information needs that involve a multitude of data sources, a multitude of
data modalities (e.g., structured, keyword, geospatial search), and availability of
computation services (e.g., machine learning and graph analytics algorithms). Al-
though SPARQL queries provide a convenient way of expressing data requests
over RDF knowledge graphs, the level of support for hybrid information needs is
limited: existing query engines usually focus on retrieving RDF data and only sup-
port a set of hard-coded built-in services accessible via SPARQL 1.1 queries. To
deal with this problem, we present Ephedra: a SPARQL federation engine aimed
at processing hybrid queries, which provides a flexible declarative mechanism for
including hybrid services into a SPARQL federation.

1 Introduction

In many practical knowledge graph management use cases there is a need to address
hybrid information needs. Such needs can be characterized by the following dimensions:

— Variety of data sources, including RDF repositories as well as other datasets pre-
sented as RDF (e.g., a relational database exposed using R2ZRML mappings).

— Variety of data modalities, in addition to RDF graph data: e.g., textual, temporal, or
geospatial data.

— Variety of data processing techniques, e.g., graph analytics, statistical analysis, ma-
chine learning, etc.

The main motivation for this work comes from our experience with the metaphac-
tory knowledge graph management platform', which is used in a variety of application
domains (e.g., cultural heritage, life sciences, pharmaceutics, and IoT infrastructure).
Typical application scenarios often require dealing with a multitude of the above-listed
aspects simultaneously: e.g., an example request like “give me the artists who collab-
orated with Rembrandt and others similar to them” involves (a) keyword search for an
RDF resource based on the keyword “rembrandt”, (b) structured search over the RDF
graph for collaborators, and (c) applying an external model (vector space similarity, such
as word2vec [1]) to find other similar entities.

To handle such use case scenarios involving hybrid information needs, we developed
Ephedra: a federated SPARQL query processing engine targeted at processing hybrid

! http://www.metaphactory.com/

4 {C¥¥ metaphactory I

Ul components Data authoring Semantic search Data visualization
TXLIT e
SPARQL 1.1queries [.)
s S N
Ephedra I RDF4] Federation SAIL API
Service I Query plan optimizer l
Registry P p
J I Runtime query execution engine I
\ /
Access via SPARQL Access via custom
SERVICE (federation) ‘ SPARQL SERVICE ‘

extensions

S—
R2RML / ODBA
Endpoint .ﬂ

Geospatial
Index

JDBC

1
! D
i I
I h
1 1
! 1
I :
I < '
| Main Triple Additional 0
! Store Triple Stores 0
1 1
1 1
i

Text Index

Specialized indices Data
(alternative data processing
Relational Data modalities) services

Fig. 1. Ephedra in the metaphactory platform architecture.

queries. SPARQL 1.1 with its SERVICE clauses provides a convenient data retrieval
formalism: a complex information request over several data sources can be expressed
using a single query. With Ephedra we adopt the SPARQL 1.1 federation mechanism,
but we broaden its usage to include custom services as data sources and optimize such
hybrid queries to be executed efficiently.

Expressing a complex hybrid information request using a SPARQL query can be
non-trivial due to the variety of potential types of services and the limitations of the
SPARQL syntax: e.g., a service can take as input a single set of parameters or a list of
arbitrary length; it can return as output one value, several values or a table of multiple
records, etc. With Ephedra we take these factors into account to support practical hybrid
federation use cases of the metaphactory platform and address hybrid information needs
in an efficient way. In this paper, we propose a reusable architecture in which hybrid
services can be easily plugged in, described in a declarative way, and invoked using
federated SPARQL queries.

2 Hybrid SPARQL federation

To support the hybrid querying functionality, we developed the Ephedra query process-
ing engine as a part of the metaphactory platform. A crucial requirement is the ability
to plug in additional services with minimal effort and reference them from SPARQL.

Figure 1 shows the generic architecture of the metaphactory platform. Ephedra is
used as a hybrid query federation layer to access the data repositories and services. In
our use case scenarios, the user’s information need is captured interactively: the user can
define search clauses, explore partial results, incrementally add new clauses, while the
system provides relevant suggestions. These interactions generate information requests
that are expressed as SPARQL 1.1 queries and given to Ephedra to process them.

As the basis for Ephedra implementation, we used the RDF4J Federation SAIL API?
reusing the common functions such as query parsing and accessing remote SPARQL
endpoints. However, Ephedra extends the RDF4J object model and overrides the static
optimization and query execution strategies to deal with hybrid queries. The Ephedra
query evaluation strategy sends the sub-clauses of the query to the corresponding data
sources and invokes the relevant processing services, then gathers the partial results,
combines them using the union and join operations, and produces the final result set.
In this way, processing becomes transparent: hybrid information needs are processed in
the same way as ordinary SPARQL queries to an RDF triple store without the need to
integrate related processing services at the Ul level.

In order to configure the services as federation members, the system requires rele-
vant information about the service type as well as service instances. Ephedra includes
two types of hybrid services: extension services and aggregate services. Extension ser-
vices take as input a partial query solution (binding set) and extend it with additional
variable bindings. Extension services are called in the query via a SPARQL SERVICE
clause. On the contrary, aggregate services operate over a set of multiple query solutions
as the SPARQL aggregate functions (e.g., AVG, MIN, MAX) do: they take as input a
list of records and produce one or more resulting binding sets. As with the SPARQL
aggregates, aggregate services are referenced as function calls in the SELECT clause.

Relevant meta-level information about the hybrid service types is summarized using
the service descriptors structured according to the service description ontology. The on-
tology expands the well-known SPIN? ontology for SPARQL query engines to capture
the relevant parameters of services.

A service descriptor contains the following information:

— Input parameters and their expected datatypes. An input parameter is described us-
ing the SPIN ontology vocabulary as a spl:Argument resource.

— Output parameters and their expected datatypes. An output parameter is described
as a spin: Column resource in the SPIN ontology.

— Expected graph pattern. The special triple patterns expected by the service are ex-
pressed using the SPIN SPARQL syntax*. The placeholders for input/output param-
eters are expressed as resources which are referenced from the input/output param-
eter descriptors.

— Input and output cardinalities of a service call (optional).

:WikidataTextSearch a eph:Service ;
rdfs:label "A wrapper for the Wikidata test search." ;
eph:hasSPARQLPattern ([

2 http://docs.rdf4j.org/sail/
3 http://spinrdf.org/
4 http://spinrdf.org/sp.html#sp-TriplePattern

sp:subject :_uri ;
sp:predicate wikidata:search ;
sp:object :_token 1) ;
spin:constraint [
a spl:Argument ;
rdfs:comment "Input token" ;
spl:predicate :_token ;
spl:valueType xsd:string] ;
spin:column [
a spin:Column ;
rdfs:comment "URI of the Wikidata resource" ;
spl:predicate :_uri ;
spl:valueType rdf:Resource] .
A descriptor for an aggregation service declares the input and output parameters
in a similar way, but instead of the list of triple patterns it defines a custom aggregate

function which will be referenced by its URI.

2.1 Implementing service extensions

To simplify the integration of new hybrid services into the framework, the architecture
provides a generic API to wrap arbitrary services and include them as SPARQL federa-
tion members. To this end, Ephedra reuses and extends the RDF4J SAIL API. A service
is represented as a SAIL module which is responsible for extracting the values of input
parameters from a given SPARQL tuple expression, executing the actual service call,
and returning the results by binding resulting values to the output variables. Ephedra
provides abstract implementations for a generic service SAIL as well as a specific wrap-
per for HTTP services. The common routines, such as extracting the input values and
output variables and wrapping the results as binding sets do not depend on the actual
service and are performed in a generic way using the declarative service descriptor.

3 Outlook

The main directions for the future work concern further minimizing the adaptation effort
needed to deploy metaphactory in a new use case. This involves, for example, build-
ing a library of reusable data analytics services (e.g., for common machine learning
algorithms). There are also several promising directions for improving the query perfor-
mance, in particular, exploiting more detailed meta-data about other types of federation
members: e.g., summary of the content for RDF triple stores and sets of R2ZRML map-
pings for relational databases.

Acknowledgements

This work has been supported by the Eurostars project DIESEL (E!9367) and by the
German BMWI Project GEISER (project no. 01MD16014).

References

1. Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in neural information processing
systems. (2013) 3111-3119

