
Building Massive Knowledge Graphs using an Automated ETL
Pipeline

Aaron Eberhart
metaphacts GmbH

Germany
ae@metaphacts.com

Peter Haase
metaphacts GmbH

Germany
ph@metaphacts.com

Wolfgang Schell
metaphacts GmbH

Germany
ws@metaphacts.com

ABSTRACT
Knowledge graphs are extremely versatile semantic tools, but there
are current bottlenecks with expanding them to a massive scale.
This concern is a focus of the Graph-Massivizer project, where
solutions for scalable massive graph processing are investigated. In
this paper we’ll describe how to build a massive knowledge graph
from existing information or external sources in a repeatable and
scalable manner. We go through the process step-by-step, and dis-
cuss how the Graph-Massivizer project supports the development
of large knowledge graphs and the considerations necessary for
replication.

CCS CONCEPTS
• Information systems→ Data exchange;Mediators and data
integration.

KEYWORDS
Graph-Massivizer; metaphactory; ETL; RDF
ACM Reference Format:
Aaron Eberhart, Peter Haase, and Wolfgang Schell. 2024. Building Massive
Knowledge Graphs using an Automated ETL Pipeline. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’24), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3629527.3652900

1 INTRODUCTION
A knowledge graph is a flexible semantic tool that can serve as
the foundation for a wide variety of information representation
purposes and use cases, such as fast-tracking drug discovery and
reducing research costs, smart manufacturing solutions to support
human manufacturing planners, and global fraud detection and
risk management. It also unlocks AI initiatives by enriching exist-
ing black-box solutions with machine-interpretable semantics and
adding a layer of trust and transparency. While knowledge graphs
are extremely versatile, there are current bottlenecks with expand-
ing them to a massive scale. This concern is a focus of the Graph-
Massivizer [3] project, where solutions for scalable massive graph
processing are investigated. In this paper we’ll describe how to build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3652900

a massive knowledge graph from existing information or external
sources in a repeatable and scalable manner. We go through the
process step-by-step, and discuss how the Graph-Massivizer project
supports the development of multiple large knowledge graphs and
the considerations necessary for replication.

1.1 Knowledge Graphs
Knowledge graphs are large networks of entities representing real-
world objects, like people and organizations, and abstract concepts,
like professions and topics, and their semantic relations and at-
tributes. Knowledge graphs help organizations centralize, organize
and understand internal data, often stored away in disparate sources.
Depending on the volume of data a knowledge graph varies in size,
ranging from a simple knowledge graph of a few to one with an
extensive repository with millions of entities and interlinked rela-
tions.

There aremultiple approaches to creating a knowledge graph this
large in size, including using an ETL (extract-transform-load) or ELT
(extract-load-transform) pipeline, which we’ll explore in this paper.
The ETL pipeline was developed as part of Graph-Massivizer, an EU-
funded research project dedicated to researching and developing a
scalable, sustainable and high-performing platform based on the
massive graph representation of extreme data.

1.2 The Graph-Massivizer Project
The Graph-Massivizer project is developing a suite of five open-
source software tools encompassing the sustainable life cycle of
processing extreme data as massive graphs. These massive graphs
support use cases such as green AI for a sustainable automotive in-
dustry, a data center digital twin for sustainable exascale computing
and more.

The tools focus on holistic usability (from extreme data inges-
tion and massive graph creation), automated intelligence (through
analytics and reasoning), performance modeling, and environmen-
tal sustainability tradeoffs, supported by credible data-driven evi-
dence across the computing continuum. For example, the Graph-
Massivizer’s Graph-Inceptor tool is designed for creating knowl-
edge graphs and storing graph data, offering two primary services:

(1) An extract, transform and load (ETL) pipeline requiring de-
ployment to an IT cloud infrastructure consisting of servers,
storage systems and databases

(2) A graph processing framework delivered as a Java library
and made available in HPC clusters

Furthermore, the project consortium aims to create an integrated
platform that is user-friendly and easy to deploy in enterprise envi-
ronments The platform will tightly integrate the tools developed
by Graph-Massivizer to provide a comprehensive offering.

https://doi.org/10.1145/3629527.3652900
https://doi.org/10.1145/3629527.3652900

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Aaron Eberhart, Peter Haase, & Wolfgang Schell

2 KNOWLEDGE GRAPH CREATION PROCESS
Once a user has decided on their approach, they can start creating
their knowledge graph, which involves many different tasks and
phases. We’ll explore in-depth some of the aspects to consider for
the knowledge graph creation process.

2.1 FAIR Data Principles
A knowledge graph is only one system within an enterprise en-
vironment consisting of interconnected systems and data sources.
One key aspect in this world of interconnected systems and data is
following the FAIR [5] data principles, which ensures the reusabil-
ity and interoperability of a knowledge graph, allowing users to
enrich and extend their knowledge graph for various use cases and
applications.

A knowledge graph supports the FAIR principles with the use
of unique and persistent identifiers for entities, providing linked
metadata describing the origin and modalities for accessing and us-
ing datasets, the use of semantic data models, and building on open
standards for storing, accessing, and querying data. The following
sections provide more information on how this works in detail.

2.2 Graph data model
Graphs are represented using the Resource Description Framework
(RDF) [6], a semantic web standard for data interchange on the
web. By using RDF, a graph can be expressed as a set of statements
(or triples), each of which describes a single fact It allows for easy
merging, linking and sharing of structured and semi-structured
data across various systems and applications.

In this paper we only consider RDF-based graphs. There are other
graph models, e.g.Labeled Property Graphs (LPG). Using RDF-star1,
any graph can be expressed, so RDF-star can also be used as a bridge
to and from Labeled Property Graphs. RDF-star is an extension of
RDF and also supports expressing statements on statements, which
allows one to model edges with attributes.

2.3 Iterative approach
When creating a knowledge graph from scratch, it is useful to apply
an iterative approach, involving:

(1) identifying source datasets and making them accessible
(2) defining a semantic data model using ontologies and vocab-

ularies
(3) defining RDF mappings to convert from structured source

data to RDF
(4) pre-processing source data (per file), e.g., to clean up data
(5) performing RDF conversion using the provided mappings
(6) post-processing intermediate results (per file), e.g., to create

additional relations or aggregate data
(7) loading RDF data into the knowledge graph to persist the

data in a graph database
(8) post-process intermediate results (whole graph), e.g., to cre-

ate additional relations or aggregate data
(9) performing data validation to ensure the graph conforms to

the defined data model.

1https://www.w3.org/groups/wg/rdf-star/publications/

Figure 1: Iterative KG Creation Approach

When violations are observed during data validation, the results
can be used as a starting point to improve the pipeline. For example,
source data can be fixed by performing data cleansing, adjusting
the ontology or RDF mappings, or performing another iteration of
the data integration process or ETL pipeline.

2.4 Providing dataset metadata
Data catalogs are a core building block for any FAIR data implemen-
tation, as they connect the available data assets with the knowledge
graph. They support both interoperability as well as accessibility,
as defined in the FAIR data principles.

In this approach, the data catalog is represented as a knowledge
graph itself. It is semantically described with descriptive metadata
and access metadata and is interlinked with other parts of the
knowledge graph—such as ontologies and vocabularies—and it is
embedded into and connected with data assets. Dataset descriptions
(or data catalogs) are based on open and extensible W3C standards
(e.g., DCAT) to make the data discoverable, accessible and trace-
able. With dataset descriptions, humans and machines (i.e., AI/ML
algorithms) can consume data in context since the data is directly
linked to the models and dataset descriptions, which themselves
are based on open standards, are shareable and can even be queried
all at once through a single, semantic query language.

2.5 Semantic Data Model
The next step in creating the knowledge graph is defining the
data model. A knowledge graph typically follows one or multiple
well-defined schemas which are specified using ontologies and
vocabularies.

2.5.1 Ontologies. Ontologies are semantic data models that define
the types of entities that exist in a domain and the properties that
can be used to describe them. An ontology combines a representa-
tion, formal naming and definition of the elements (such as classes,
attributes and relations) that define the domain of discourse. One
may think of it as the logical graph model that defines what types
(sets) of entities exist, their shared attributes and logical relations.

https://www.w3.org/groups/wg/rdf-star/publications/

Building Massive Knowledge Graphs using an Automated ETL Pipeline ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

Ontologies can be specified using open standards like Web Ontol-
ogy Language (OWL) [1] and Shapes Constraint Language (SHACL)
[2].

2.5.2 Vocabularies. Vocabularies are controlled term collections or-
ganized in concept schemes that support knowledge graph experts,
domain experts and business users in capturing business-relevant
terminology. A term could include preferred and alternative labels
(synonyms) in multiple languages and carries natural language
definitions. Terms can be related to each other or defined as loosely
related. The most common examples of different types of vocabular-
ies are thesauri, taxonomies, terminologies, glossaries, classification
schemes and subject headings, which can be managed using SKOS
as an open standard.

2.6 RDF Mappings
The mapping process enables simple conversion, from a huge
amount of source data to RDF, in an automated fashion. Converting
structure data to RDF can be done by mapping certain elements and
attributes from the source files to RDF data using a set of mapping
rules.

As an example, all values of a column in a CSV file or a table in
a relational database are mapped to RDF statements with the row’s
unique key being mapped to a subject IRI, the column to a predicate
and the row value to the object position of a triple. Mapping rules
can be provided either in a declarative way or programmatically.

2.6.1 Declarative mappings. Declarative mappings follow the no-
code approach, meaning they can be defined using a simple text
editor or visual tools, without requiring special programming skills.

The mappings are defined using the standardized Relational
Mapping Language (RML). RML itself is also based on RDF, so both
data model (ontology), mappings (RML maps) and instance data
all use the same format. RML supports both tabular/relational and
hierarchical data structures in formats like CSV, JSON or XML.
Support for other formats can be provided as well.

RML defines just the mapping language. A wide range of imple-
mentations in the form of mapping engines (most of them open-
source) are available. They can be used either as stand-alone tools
or embedded into custom applications as a library.

2.6.2 Programmatic mappings. Implementing the mapping process
using a custom program is the most flexible way to convert data
to RDF. All means provided by the programming language and
its ecosystem— such as frameworks and libraries—can be used
(e.g., accessing data in various formats). Also, language-specific
connectors, such as JDBC to access relational databases in the Java
programming language, or web service connectors provide great
flexibility. The biggest advantage is full control over the mapping
process, as any kind of algorithm, data generation, use of caches
and memory, navigating data structure or control flow is possible.

2.6.3 Choosing between declarative or programmatic approach. Us-
ing declarative mappings based on RML is the quickest and easiest
way to implement mappings from structured data to RDF, as it
follows a pre-defined approach that covers many use cases and
formats and does not require special programming skills.

Only when declarative mappings do not suffice for the mapping
at hand, should mappings be implemented as a custom program.
While programmatic mappings allow for greater flexibility, this
approach also requires more effort and programmatic skills, which
are not necessarily available to people implementing a data pipeline.

In some cases where declarative mappings support most data
structures to be mapped to RDF and only a few more complicated
cases cannot be covered, a hybrid approach may be suitable. In that
case, most mappings would be implemented declaratively in RDF
and only a few special cases be handled by custom coding.

2.7 Performing pre- and post-processing
Besides converting source data as-is to RDF, sometimes additional
steps are required to conform to the graph data model. This may be
performed as pre- or post-processing steps, either on the original
source before the RDF conversion or after.

Pre-processing steps typically work on the unit of a single source
file. Typical examples are data cleansing, filtering of invalid data,
splitting out units from numerical values, and datatype conversions
to conform with certain numeric or date-time formats.

Post-processing steps may either be performed on the interme-
diate RDF files or the whole graph. Typical examples are tasks such
as: specify the named graph for a set of statements, update graph
metadata, such as the timestamp of last update of a dataset based
on source data, and others.

2.8 Data Ingestion
The result of the previous steps is composed of a set of files in RDF
format. This set of files may already be used to distribute the data
in RDF format, e.g. as a data product.

As a next step, ingesting this file-based dataset into a graph
database provides a base for easy querying and graph analytics
supported by the database engine.

In addition to loading the data into the database for querying
using the SPARQL query language, creating a full-text search index
enables additional capabilities when searching for textual data in the
graph. This is typically handed off from the database to specialized
and tightly integrated full-text search engines like Lucene2, Solr3,
or Elasticsearch4.

2.9 Performing data validation
Once all data has been converted to RDF and is ingested in the
database, it can be submitted to a data validation to ensure good
data quality.

When defining the ontology using OWL and SHACL, the model
description can be used to automatically validate the database and
ensure that data follows the defined model. This can be done using a
so-called SHACL engine, which verifies that the data in the database
adheres to the shapes defined in the ontology. SHACL engines are
provided by (commercial) RDF databases as well as open-source
projects or commercial tools such as metaphactory.

2https://lucene.apache.org/
3https://solr.apache.org/
4https://www.elastic.co/

https://lucene.apache.org/
https://solr.apache.org/
https://www.elastic.co/

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Aaron Eberhart, Peter Haase, & Wolfgang Schell

Figure 2: ETL Architecture

3 ARCHITECTURE
The pipeline uses amultitude of AWS services to implement the RDF
conversion and ingestion process with a cloud-native approach re-
sulting in high parallelization and efficient use of resources. Details
on this architecture can be found in Figure 2.

4 EXAMPLE
The Graph Massivizer use cases from the data center, industrial,
and financial domains are based on either commercial, internal or
sensitive datasets, so they cannot be used for a public demonstration.
Instead, we’ll use the Dimensions Covid Dataset5 [4] as an example
of a large, publicly available dataset to create a scientific knowledge
graph using the ETL pipeline.

The dataset provides information on global publications, aca-
demic papers, authors, research organizations, funders, grants,
datasets and clinical trials. The zipped dataset (1.09GB) is avail-
able for download on Figshare. The data files are in CSV format, the
fields are described in the documentation of the main Dimensions

5https://www.dimensions.ai/covid19/

dataset (although not all documented fields are available in this
publicly available subset).

The semantic data model and dataset description as well as the
corresponding RML mappings are provided as an example in the
ETL pipeline Git repository6.

5 FUTUREWORK
The ETL pipeline will be extended and integrated to work with the
Graph-Massivizer toolkit. This process will continue through the
duration of the project, adapting to evolving project needs and use
cases.

In parallel with Graph-Massivizer developments, work on the
ETL pipeline will also provide and extend capabilities with the
metaphactory platform.

Acknowledgement This project has received funding from the
European Union’s Horizon Research and Innovation Actions under
Grant Agreement Nº 101093202.7

6https://github.com/metaphacts/metaphacts-etl-pipeline
7More information available at: https://graph-massivizer.eu/

https://www.dimensions.ai/covid19/
https://github.com/metaphacts/metaphacts-etl-pipeline
https://graph-massivizer.eu/

Building Massive Knowledge Graphs using an Automated ETL Pipeline ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Sean Bechhofer, Frank vanHarmelen, JimHendler, Ian Horrocks, DeborahMcGuin-

ness, Peter Patel-Schneijder, and Lynn Andrea Stein. 2004. OWL Web Ontology
Language Reference. Recommendation. World Wide Web Consortium (W3C). See
http://www.w3.org/TR/owl-ref/.

[2] Dimitris Kontokostas and Holger Knublauch. 2017. Shapes Constraint Language
(SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/2017/REC-shacl-
20170720/.

[3] Radu Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, Alexandru Iosup,
Evgeny Kharlamov, Jože Rožanec, Laurenţiu Vasiliu, and Ana Lucia Vărbănescu.
2022. Towards Extreme and Sustainable Graph Processing for Urgent Societal

Challenges in Europe. In 2022 IEEE Cloud Summit. 23–30. https://doi.org/10.1109/
CloudSummit54781.2022.00010

[4] Dimensions Resources. 2021. Dimensions COVID-19 publications, datasets and
clinical trials. (9 2021). https://doi.org/10.6084/m9.figshare.11961063.v42

[5] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3 (2016).

[6] David Wood, Markus Lanthaler, and Richard Cyganiak. 2014. RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

http://www.w3.org/TR/owl-ref/
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.6084/m9.figshare.11961063.v42

	Abstract
	1 Introduction
	1.1 Knowledge Graphs
	1.2 The Graph-Massivizer Project

	2 Knowledge graph creation process
	2.1 FAIR Data Principles
	2.2 Graph data model
	2.3 Iterative approach
	2.4 Providing dataset metadata
	2.5 Semantic Data Model
	2.6 RDF Mappings
	2.7 Performing pre- and post-processing
	2.8 Data Ingestion
	2.9 Performing data validation

	3 Architecture
	4 Example
	5 Future Work
	References

